New Studies Reveal Unique Bacterial Community Dynamics and Microdiversity in Antarctic Wetlands


Two new publications contributing to the Ant-ICON Programme have been published in Environmental Microbiology and Molecular Ecology.

The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution

As functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e. clustering ASVs into OTUs with decreasing sequence identity thresholds). We found that the relative influence of the community assembly processes varies with phylogenetic resolution. More specifically, selection processes seem to impose stronger influence at finer (100% sequence similarity ASV) than at coarser (99%–97% sequence similarity OTUs) resolution. We identified environmental features related with the ecological processes and propose a conceptual model for the bacterial community assembly in this Antarctic ecosystem. Briefly, eco-evolutionary processes appear to be leading to different but very closely related ASVs in lotic, lentic and terrestrial environments. In all, this study shows that assessing community assembly processes at different phylogenetic resolutions is key to improve our understanding of microbial ecology. More importantly, a failure to detect selection processes at coarser phylogenetic resolution does not imply the absence of such processes at finer resolutions.

Citation: Quiroga, M.V., Valverde, A., Mataloni, G., Casa, V., Stegen, J.C. and Cowan, D. (2022), The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution. Environ Microbiol, 24: 3486-3499. https://doi.org/10.1111/1462-2920.15912


Microdiverse bacterial clades prevail across Antarctic wetlands

Antarctica’s extreme environmental conditions impose selection pressures on microbial communities. Indeed, a previous study revealed that bacterial assemblages at the Cierva Point Wetland Complex (CPWC) are shaped by strong homogeneous selection. Yet which bacterial phylogenetic clades are shaped by selection processes and their ecological strategies to thrive in such extreme conditions remain unknown. Here, we applied the phyloscore and feature-level βNTI indexes coupled with phylofactorization to successfully detect bacterial monophyletic clades subjected to homogeneous (HoS) and heterogenous (HeS) selection. Remarkably, only the HoS clades showed high relative abundance across all samples and signs of putative microdiversity. The majority of the amplicon sequence variants (ASVs) within each HoS clade clustered into a unique 97% sequence similarity operational taxonomic unit (OTU) and inhabited a specific environment (lotic, lentic or terrestrial). Our findings suggest the existence of microdiversification leading to sub-taxa niche differentiation, with putative distinct ecotypes (consisting of groups of ASVs) adapted to a specific environment. We hypothesize that HoS clades thriving in the CPWC have phylogenetically conserved traits that accelerate their rate of evolution, enabling them to adapt to strong spatio-temporally variable selection pressures. Variable selection appears to operate within clades to cause very rapid microdiversification without losing key traits that lead to high abundance. Variable and homogeneous selection, therefore, operate simultaneously but on different aspects of organismal ecology. The result is an overall signal of homogeneous selection due to rapid within-clade microdiversification caused by variable selection. It is unknown whether other systems experience this dynamic, and we encourage future work evaluating the transferability of our results.

Citation: Quiroga MV, Stegen JC, Mataloni G, Cowan D, Lebre PH, Valverde A. Microdiverse bacterial clades prevail across Antarctic wetlands. Mol Ecol. 2024 Jan;33(1):e17189. doi: 10.1111/mec.17189. Epub 2023 Nov 1. PMID: 37909659.

Support Us

Interested in contributing to SCAR?

Monthly Newsletter

Sign up to our free monthly newsletter here: