

Action Group Proposal

Names of the lead proponents

Takuji Nakamura (National Institute of Polar Research(NIPR), Japan)

Mike Taylor (Utah State University, USA)

Damian Murphy (Australian Antarctic Division(AAD), Australia)

Tracy Moffat-Griffin (British Antarctic Survey(BAS), UK)

José Valentin Bageston (National Institute for Space Research – INPE, Brasil)

Geonhwa Jee, (Korea Polar Research Institute(KOPRI), S. Korea)

Temperature in the middle and upper atmosphere

Target of ANGWIN: Gravity waves in the southern high latitude

Sources of gravity waves

Why important over Antarctica?

- Knowledge of the gravity wave sources and how they vary are not well understood in this region due to lack of observations.
- These observations can help refine gravity wave representations in models
- Most global atmosphere models struggle to predict realistic temperatures (the "cold pole" problem) and the timing of the polar vortex breakdown (winds too strong).
- This has been shown to be linked to how gravity waves are represented in these models.

What is ANGWIN?

ANGWIN is a "scientist driven" concept that is designed to develop a network of *Antarctic gravity wave* observatories.

Operated by different nations working together in a spirit of close scientific collaboration.

Collaboration between U.S.A., Japan, U.K., Australia, Brazil, and Korea

What is ANGWIN?

Initially started with a focus on mesospheric airglow observations, now expanded to include all gravity wave instrumentation.

The primary objectives of the network are to:

- Quantify the longitudinal variation in gravity wave activity from the lower atmosphere into the mesosphere and lower thermosphere above Antarctica, and determine causes.
- Characterize the propagation and dynamical influence of mountain waves on stratosphere and MLT dynamics.
- Relate gravity waves observed in the stratosphere, mesosphere and thermosphere to sources such as storms in the Drake's Passage and Southern Ocean, auroral activity or the polar vortex.
- Study the interaction of gravity waves with global scale waves and their contribution to the polar vortex dynamical and thermal structure.
- Compare observed polar gravity wave characteristics to parameterized gravity waves in climate model.

What have we done so far...

Workshops:

- Four held since 2012 (Japan, USA, UK, Brasil)
- each attended by 35-50 scientists
- over 12 different nations represented
- about 1/3 attendees early career scientists

Website and social media:

- www.bas.ac.uk/project/angwin/, @ANGWIN_2
- The instrument database started intend to list as many gravity wave instruments that are in the Antarctic as possible.
- Twitter used to advertise workshops, ANGWIN related presentations and papers.
- Web of the latest workshop http://www.inpe.br/angwin/

1st International ANGWIN Workshop, NIPR, Tokyo, Japan, March, 2013

ANGWIN

2nd International ANGWIN Workshop Logan, Utah, USA, October, 2014

3rd International ANGWIN Workshop, Cambridge, UK, April, 2016

ANGWIN

4th International ANGWIN Workshop, São José dos Campos, SP, Brasil, April 2018.

ANGWIN

What have we done so far...

Papers and presentations:

- JGR (joint atmosphere and space) special issue:
 - currently 8 papers published, with 3 more under review
 - topics ranging from ionospheric observations of gravity waves to those observed in the stratosphere above Antarctica.
- Encouraging attendees at the ANGWIN workshops to use ANGWIN as a keyword in related papers.
- Numerous ANGWIN related presentations at conferences such as IUGG, IAGA, COSPAR, SCAR OSC

What we have done so far (First step)

Comparison of GW statistics (directionality) of different years

1st Comparison of propagation direction by phase velocity spectrum (the same analysis technique has been applied for the first time)

(Spectra averaged for Apr 6 - May 21, 2013)

[Matsuda et al., 2017, ANGWIN special issue, JGR]

Propagation direction and speed of gravity waves (λh:10-100km,τ:8-60min)

Station	lat	lon	directionality
Syowa	698	40E	SW- NW -NE
Davis	698	78E	<u>All</u>
McMurdo	785	156E	SW- W -N
Halley	76S	27W	SE- SW -NW

Davis

propagating to all directions
Other three stations (Syowa, Halley, McMurdo):

generally Westward

Detailed comparison between the two sites (Syowa, Davis)

2016 winter data

What have we done so far...

Exchange students between ANGWIN institutes

NIPR, Japan to USU, USA for three months (2015)

NIPR, Japan to USU, USA for one month (2017)

Chungnam National Univ., S. Korea to NIPR, Japan for two

months (2017/8)

NIPR, Japan to AAD, Australia for 4 months (2018)

USU, USA to NIPR, Japan, for three month (2018)

