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State of Knowledge of Wildlife Responses to RPAS 

A Working Paper submitted by SCAR 

Summary 
The increasing use and utility of Unmanned Aerial Vehicles (UAVs), which are now preferably known as 
Remotely Piloted Aircraft Systems (RPAS), across the globe, including in Antarctic, brings corresponding 
challenges to their management.  The CEP has recognised on several occasions the need for more 
information to inform guidelines on RPAS use around wildlife in Antarctica, including a request for SCAR 
to present a summary of the current state of knowledge regarding wildlife responses to RPAS.  Here we 
present a synthesis from 23 published scientific research papers on wildlife responses to RPAS. Responses to 
RPAS were not consistent across species, and responses also varied in relation to flight path parameters (e.g. 
height and approach angle) and the type of RPAS. It is likely that wildlife responses are under-estimated in 
many cases due to a lack of data on physiological responses. Data on demographic effects (for example, 
changes in breeding numbers or breeding success) are also lacking. Guidelines for minimising RPAS 
disturbance to wildlife have been developed (see Hodgson and Koh 2016 [1] and Background Paper 1) and 
should be considered in Antarctic biological field research, but further studies are required to inform best-
practice RPAS use in Antarctica around wildlife. 

Introduction 
1) Unmanned aerial vehicles (UAVs), also known as unmanned aerial systems (UAS), drones, or 

preferably, to avoid gender bias, Remotely Piloted Aircraft Systems (RPAS), are increasingly used 
in wildlife research around the world (including Antarctica) due to their efficiency, cost effectiveness 
and accuracy [2,3,4]. 

2) In Antarctica, RPAS have been used for population monitoring [5,6,7], fine scale vegetation 
mapping [8], determining ecosystem function [9], operational applications [10,11] and during tourist 
activities (with permits [12]) 

3) Applications of RPAS in other parts of the world are even more diverse. Environmentally related 
applications include: monitoring habitat and biodiversity loss [13], biodiversity assessment [14], 
population monitoring [15,16,17,18), fine scale habitat assessment [19], locating tracked wildlife 
[20], as an anti-poaching measure [21] and vegetation monitoring [22]. 

4) Concomitant with this increasing use is an increasing awareness of the potential impacts, both from 
an operational and wildlife disturbance perspective [1, 7]. 

5) At ATCM XXXVII (2014) discussions on the use of RPAS in Antarctica culminated in a request to 
COMNAP, SCAR and IAATO to consider the issue of wildlife responses to RPAS and bring back 
information which explored the utility and risks of RPAS operation in Antarctica. 

6)  In ATCMXXXVIII WP27, SCAR presented results of a meta-analysis of wildlife approach 
distances (see also [23]), and concluded that: 

a. Consistent with earlier recommendations, there was no one-size-fits-all approach to managing 
human disturbance effects on wildlife. Management guidelines for different sites and species 
need to be developed on a case-by-case basis, ideally in conjunction with carefully designed 
experiments. 

b. Animal behavioural changes do not necessarily reflect cryptic (physiological), and more 
deleterious impacts, such as changes in physiology, or long-term changes in population trends.  

c. The scientific evidence base for limiting human disturbance impacts to Antarctic wildlife is 
inadequate, and is in urgent need of improvement via a range of dedicated studies on RPAS, and 
other disturbances across a range of sites and species. 
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7) In its subsequent advice to ATCM XXXVIII (2015), the CEP recognised the benefits of developing 
guidance on the environmental aspects of RPAS use in Antarctica. Following submission of further 
information to CEP XIX in 2016 on RPAS use in Antarctica from Germany (ATCMXXXIX WP01- 
see also [7]), Poland (ATCMXXXIX IP057 – see also [24]), COMNAP (ATCMXXXIX WP014 
[11]) and IAATO (ATCMXXXIX IP120 [12]), the CEP provided similar advice to the ATCM and 
agreed to initiate work in this respect at CEP XX in 2017. 

8) Following the discussions at CEP XVIII, SCAR agreed to report back to the CEP in 2017 on the 
current state of knowledge of wildlife responses to RPAS. 

Approach 
9) Literature searches were made using a range of search terms covering all RPAS nomenclature using 

Google Scholar, Web of Science, reference mining and citation tracking from key references. 
National Guidelines on RPAS use were also requested from SCAR Delegates, National Antarctic 
Committees and COMNAP.  

10) Studies were included in our assessment if they i) were published in peer reviewed literature, ii) 
included RPAS use around wildlife that was not captive, semi-captive or domesticated, and iii) 
included some form of monitoring of wildlife response to RPAS (even if it was incidental). 

11) Summaries of the findings of these studies were compiled based on target species, RPAS type, 
behavioural response and flight path details (Appendix 1). A full list of references is provided in 
Appendix 2. 

Findings 
12) Twenty-three published studies were included in the assessment. Of these, 12 documented a change 

in wildlife behaviour in response to RPAS. All studies used behavioural change as a measure of 
response, but only one [26] quantified physiological changes to measure the level of response to 
RPAS.  

13) Measurement of behavioural change ranged from observational (no recording, qualitative assessment 
of change) to experimental, where video recording was used with a quantifiable scale of behaviour 
change. 

14) Responses to RPAS were not consistent across species, and responses also varied in relation to flight 
path parameters (e.g. height and approach angle [7,26] and the type of RPAS [24,27]. However, 
most studies that reported a response, found that lower RPAS flights elicited a stronger response. 
Vertical approaches to birds typically elicited more responses than horizontal or angled approaches 
[7,26]. 

15) Launching RPASs no closer than 100 m to bird colonies has been recommended [26], and supported 
by preliminary data on Antarctic penguins [7].  

16) Noise of RPAS can be detected from large distances, and the ability to detect RPAS varies 
considerably among species [28]. Noise was identified in several studies as an important factor of 
interest in eliciting responses [6,7,24,29] and there is some evidence that electric powered fixed wing 
RPAS elicited less response than wet-fuel powered RPAS at the same altitude [24]. 

17) Preliminary evidence suggests that group size influences response [26,27] and that animals at 
different stages of the breeding cycle show different responses [30]. 

18) Physiological responses, for example heart rate, are a good indicator of acute and/or chronic stress in 
wildlife [23,31]. A variety of methods have been used successfully to measure the physiological 
responses of wildlife to disturbance in the Antarctic region. These include heart rate measurements 
using artificial eggs (e.g. [32,33,34]) or externally-mounted/implanted data loggers (e.g. [35,36]).  
Monitoring changes in blood chemistry can also provide important insights into stress responses (e.g. 
[37,38]). 
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19) Pilot training is a key element in minimising the risk of accidents and major disturbance or injury to 
species under study. While this aspect received a higher profile in the operational guidelines (e.g. 
from national authorities), it is also relevant in mitigating negative responses from wildlife [1]. 

20) While there is some evidence that some species may habituate in response to repeated drone flights 
[39], data on this aspect are sparse and other studies present no evidence of habituation [7]. 

21) In addition to the COMNAP UAS Handbook [11], there are a range of national guidelines in place 
for use of RPAS in Antarctica that have been made available by national authorities. Most are 
operational in nature, and deal with the safe flying of RPAS with regard to other aircraft or 
infrastructure. Several require permits to be obtained prior to flying around any concentrations of 
wildlife. Some also prescribe specific minimum approach distances ranging from 100-350 m. All 
note that minimizing disturbance to wildlife needs to be considered as part of any plan to deploy 
RPAS in Antarctica. Some national authorities have separate guidelines for recreational use of RPAS 
in Antarctica. 

22) IATTO currently bans any use of RPAS for recreational use, although permits are issued by the 
appropriate national authorities for commercial or scientific use during tourist activities [12]. 

Conclusions 
23) Use of RPAS around wildlife is increasing in Antarctica, and considering the similar increase 

observed globally, their use in Antarctica will not only continue to increase but also expand in their 
application. 

24) Consistent with the SCAR recommendations in ATCMXXXVIII WP027, this review supports the 
conclusion that there will not be a one-size-fits-all solution to the mitigation of wildlife responses to 
RPAS. Guidelines will clearly need to be site- and species-specific and consider the type of RPAS 
used, including noise output. 

25) Given that physiological responses (indicative of a stress) can occur without any sign of behavioural 
responses (e.g. [25]), further studies that include the physiological response of wildlife to RPAS are 
needed. Data on demographic changes in response to RPAS use are also lacking and more studies 
are required. 

Recommendations 
26) SCAR recommends that the CEP considers implementation of the following preliminary best 

practice guidelines for all RPAS use in the vicinity of wildlife in Antarctica until further information 
becomes available:  

i.Take-off should be further than 100 m from wildlife and if possible, out of sight of the target species. 
Horizontal approaches to wildlife are preferable [7,26] and RPAS should be flown at the 
maximum height practicable to achieve the study objectives. 

ii.Electric powered RPAS should be used where possible to minimise noise impacts, and careful 
consideration should be given to the altitude at which wet fuel driven RPAS are used. 

iii.The recommendations of Hodgson and Koh (2016) ([1] and Background Paper 1) should be 
consulted and adhered to or exceeded wherever possible when planning RPAS use around 
wildlife in Antarctica. 

27) SCAR further recommends that future studies on wildlife response to RPAS in the Antarctic should 
consider: 

i.A range of species including flying seabirds and seals. 

ii.Both behavioural and physiological responses. 

iii.Demographic effects, including breeding numbers and breeding success. 

iv.Ambient environmental conditions, for example, wind and noise. 
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v.The effects of RPAS of different sizes and specifications. 

vi.The contribution of RPAS noise to wildlife disturbance. 

vii.Comparisons with control sites and human disturbance. 

viii.Habituation effects. 
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Appendix 1 – Summary of peer reviewed published papers that monitored responses of wildlife to Remotely Piloted Aircraft Systems (RPAS) 
 
Reference Journal Species RPAS type Disturbance 

study? 
Vertical 
Heights 
(m) 

Were 
responses to 
sound 
observed? 

Were 
behavioural 
responses 
observed? 

Were 
physiological 
responses 
observed ? 

Antarctic region 
Rümmler et al. 
(2016) [7] 

Polar Biology Adélie penguins Octocopter Yes 10-50 NA Yes NA 
 

Goebel et al. 
(2015) [6] 

Polar Biology Chinstrap penguins 
Gentoo penguins, 
Fur seals 

Hexacopter No 23-60 No (but 
compared 
with ambient) 

No NA 

Korczak-
Abshire et al. 
(2016) [24] 

CCAMLR Science Adélie penguins, 
Southern giant 
petrels 

Fixed wing Yes 350 NA 
 

Yes  NA 

Ratcliffe et al. 
(2015) [40] 

Journal of Unmanned 
Vehicle Systems 
(JUVS) 

Gentoo penguins Hexacopter No 30 NA 
 

Yes NA 

Global         
Ditmer et al. 
(2015) [25] 

Current Biology Bears Quadcopter Yes 20 Yes Yes Yes 

Vas et al. 
(2015) [26]  

Biology Letters Greenshanks, 
Flamingos.  

Quadcopter Yes 4-30 NA 
 

Yes NA 

McEvoy et al. 
(2016) [27] 

JPress Mixed waterbirds Multirotor, 
fixed wing 

Yes 40-120 NA 
 

Yes NA 

Smith et al. 
(2016) [41] 
 

 JUVS Marine mammals Multirotor, 
fixed wing 

Yes 5-300 + Yes Yes NA 
 

Sarda-
Palomera et al. 
(2012) [16] 

Ibis Gulls Fixed wing No 30-40 NA 
 

No NA 

Grenzdörffer 
(2013) [42] 

Book chapter Gulls Multirotor No 15 NA 
 

No NA 

Weissensteiner 
et al. (2015) 

Journal of Avian 
Biology 

Canopy nesting birds Quadcopter No 5 NA 
 

Yes NA 
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[43] 
Chabot et al. 
(2015) [39] 

PLoS One Terns Fixed wing No 90-122 NA 
 

Yes  NA 

Chabot and 
Bird (2012) 
[15] 

Waterbirds Geese Fixed wing No 30-40 NA 
 

No NA 

Pomeroy et al. 
(2015) [30] 

JUVS Grey seals Multirotor No 40-250  NA 
 

Yes NA 

Durban et al. 
(2015) [44] 

JUVS Killer whales Hexacopter No 35-40 NA 
 

No NA 

Duvala et al. 
(2015) [45] 

Environmental 
Practice 

Mixed waterbirds Fixed wing, 
gas powered 

No 15-146 NA 
 

Yes NA 

Moreland et al. 
(2015) [29] 

JUVS Ribbon and spotted 
seals 

Fixed wing No 122 NA 
 

Yes NA 

Koski et al. 
(2015) [46] 

JUVS Bowhead whales Mini-copter No 120 NA 
 

No NA 

Acevedo-
Whitehouse et 
al. (2010) [47] 

Animal Conservation Whales RC Helicopter No 13 NA 
 

No NA 

Vermeulen et 
al. (2013) [17] 

PLoS One Elephant Fixed wing No 100 NA 
 

No NA 

Mulero-
Pázmány et al. 
(2014) [21] 

PLoS One Rhino FW No 100-180 NA 
 

No NA 

Jones et al. 
(2006) [48] 

Wildlife Society 
Bulletin 

Manatee FW No 100-150 NA 
 

No NA 

Hodgson et al. 
2016 [18] 

Scientific Reports Frigate birds, Crested 
terns, Royal 
penguins 

Multirotor, 
fixed wing 

No 75-120 NA No NA 
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