Back to the Future: Past Antarctic Climates, Ice Sheet History

\&
 Their Relevance for Understanding Future Trends

Scientific Committee on Antarctic Research Antarctic Science Lecture

Carlota Escutia
Spanish Research Council (CSIC)-University of Granada, Spain and
the SCAR-PAIS Steering Committee

Why do we need paleoclimate records from Antarctica?

Long-term paleoclimate records - Technical Challenges: The need for collaborative international efforts - The role of SCAR

How past Antarctic environmental conditions can inform future changes

The road ahead: SCAR-Past Antarctic Ice Sheet Dynamics (PAIS)

Polar ice plays an important role in the Climate System:

- Earth's albedo
- Ocean circulation
- Sea level
- Air-Sea interactions
- Marine productivity

The Global Abyss: The Earth's Record Keeper

Earth System: Ice Sheet-Ocean Interactions

 Sea Level \& Bottom Water Production
The Global Abyss: The Earth's Record Keeper

Global Bottom Water Production

Impact!

 Sea-Level
Change

Lithosphere

Space
Changes in
Solar Radiation
 ce-Sheet Dynamics

Ice

Crust

Mantle

Core

Despite their important role in the global system, polar areas are largely unsampled

- Deep Sea Drilling Project - Ocean Drilling Program • Integrated Ocean Drilling Program more than 200 expeditions in the history of Ocean Drilling - 16 in high-latitudes

Northern Hemisphere Glaciations start around 3 million years ago

Critical questions that need to be addressed with long-term sedimentary records from the Antarctic margins

- How do ice sheets and sea level respond to a warming climate?
- How was the Antarctic and the Southern Ocean different under high CO_{2} conditions (i.e., $400 \mathrm{ppm}, 600 \mathrm{ppm},>1000 \mathrm{ppm}$)?
- What forcing mechanisms, thresholds, rates?
- Opening and closing of gateways and their paleoceanograhic consequences
- How does ice sheet/sea ice variability affect bottom water formation and how it relates to global circulation?

Why do we need paleoclimate records from Antarctica?

Long-term paleoclimate records - Technical Challenges: The need for collaborative international efforts - The role of SCAR

How past Antarctic environmental conditions can inform future changes

The road ahead: SCAR-Past Antarctic Ice Sheet Dynamics (PAIS)

ICE CORES

Continuous reconstructions of past climate back to 800,000 years

$\mathrm{CO}_{2}=400 \mathrm{ppm}$ in 2013

Levels of CO_{2} much lower than present in the past 800,000 years!!!

In order to have an analogue to present CO_{2} conditions and what this might mean for ice sheet stability we need to have longer records so we can see further back in time

Last time the Earth experienced CO_{2} concentrations similar to

 present is during the warm Pliocene: 5-3 million years ago
the level of warming during the warm Pliocene is within range of the estimates of the Earth's global temperature \& CO_{2} increases for the 21st century (IPCC, 2013)

LONG-TERM (>1 Ma) RECORDS ARE NEEDED IF WE ARE TO UNDERSTAND ICE SHEET DYNAMICS UNDER THESE CONDITIONS

Tools of Exploration

Outcrops

Subglacial records

Marine records

COMNAP

Long-term records from Antarctic Outcrops

Subglacial Access

Long-term records from marine sediments

Sedimentary Components: Environmental Indicators

Detailed understanding of past environments and climate are essential for a more complete understanding of climate variability and the forces that control future change and responses to change.

Sediment records

> IMPROVE CLIMATE MODELS

SCAR's role in advancing our understanding of past Antarctic paleoclimates \& ice sheet behavior

- SCAR-ANTOSTRAT (ANTarctic Offshore STRATigraphy) 1996-2002 Reconstruct the glacial history of Antarctica through stratigraphic studies of the continental margin using geophysical data.
Towards the end of the Program the aim was also to reconstruct the Cenozoic paleoclimatic and glacial history of the Antarctic region from the study of the sedimentary record surrounding the continent.
- SCAR-ACE (Antarctic Climate Evolution) 2003-2012 "to link climate and ice sheet modeling studies with geophysical surveys and geological studies on and around the continent."
- SCAR-PAIS (Past Antarctic Ice Sheet Dynamics) 2013-2020
"Reconstruct past Antarctic ice sheet dynamics and its contribution to sea level change in response to past warm climates with elevated temperatures and CO_{2} (i.e., from greenhouse to warmer than present icehouse climates).

Summary

- Antarctica is key to understanding how ice sheets will respond to forecasted elevated temperatures and CO_{2} concentrations.
- Long-term (>1 million years) paleoclimate \& ice sheet dynamics records are key in informing future trends of ice sheet behaviour.
- There are major thechnological and logistical challenges that can be overcome through national and international coordination and collaboration through COMNAP.
- SCAR has been central to community coordination and collaborations to obtain and integrate long-term paleoclimate and glacial history records.

Why do we need paleoclimate records from Antarctica?

Long-term paleoclimate records - Technical Challenges: The need for collaborative international efforts - The role of SCAR

How past Antarctic environmental conditions can inform future changes

The road ahead: SCAR-Past Antarctic Ice Sheet Dynamics (PAIS)

Why do we need paleoclimate records from Antarctica?

Long-term paleoclimate records - Technical Challenges: The need for collaborative international efforts - The role of SCAR

How past Antarctic environmental conditions can inform future changes

The road ahead: SCAR-Past Antarctic Ice Sheet Dynamics (PAIS)

Environmental reconstructions in Antarctica

Greenhouse world (55-34 million years) >1000 ppm CO

Analog for conditions in 2100:
IPCC AR5-RCP 8.5
936 ppm CO 2
1313 ppm when
considering combined greenhouse gases $\mathrm{CO}_{2}-$ equivalent

latest Early Eocene ~50 millions of years

3D preservation of conifer branches in concretions - can withstand cool climates with snow

NLE Araucaria araucana, Monkey Puzzle, Chilean Andes

Pollen from - 50 million years, Wilkes Land IODP Site 1356

Pollen of extent palms

Mean Annual T: $>13.3^{\circ} \mathrm{C}$
Cold Month mean T: $>5^{\circ} \mathrm{C}+3^{\circ} \mathrm{C}$
Pollen from Wilkes Land
 Warm Month mean T: $>22.8^{\circ} \mathrm{C}$

Pross et al., Nature, 2012

Pollen of extent Bombacaceae plants

Mean Annual T: >16.8
Cold Month mean $\mathrm{T}:>10.6^{\circ} \mathrm{C}+3^{\circ} \mathrm{C}$ Warm Month mean $\mathrm{T}:>21.5^{\circ} \mathrm{C}$

Other Organic components in these sediments provide $\mathbf{T} \mathbf{2 0 - 2 5}{ }^{\circ} \mathrm{C}$

We have learned that Greenhouse Antarctica $\left(\mathrm{CO}_{2}>1000 \mathrm{ppm}\right)$:

- Did not sustain ice sheets until 34 million years ago when a continental ice sheet grew in Antarctica.
- Global sea levels were 60-80 m higher than today.
- Temperatures were high, much higher than previously thought.

We do not know how representative are our records of Antarctic-wide conditions.
Considering IPCC (2013) forecasts CO_{2} concentrations around 1000 ppm for $2100 \ldots$

We need more comprehensive records to constrain regional differences \& continental-ocean gradients and models - Are we going back to greenhouse conditions?

Greenland Ice sheet: 7 m SLE

West Antarctic Ice Sheet: 7 m SLE

East Antarctic Ice Sheet: 60 m SLE

Environmental reconstructions in Antarctica during the warm Pliocene: 5-3 million years ago

Pliocene Warm Period
3-5 million years ago

- 400 ppm CO 2
- 2-3${ }^{\circ} \mathrm{C}$ warmer
- ice sheets, continents and oceans similar to today: Similar Climate System

Good analog for the near future (next decades?)
IPCC AR5 RCP2.6 in 2100421 ppm CO
475 when considering combined greenhouse gases CO_{2}-equivalent

ANDRILL MIS cores: Ross Sea

marine-based WAIS dynamic during the Pliocene

Naish et al., Nature 2009

Minimum ice extent

(micry icopic shelled o cranisms)

Modern ice extent

Maximum ice extent

Polar ice sheet \& sea-level response during warm periods 5-3 million years ago

Far field records indicate global mean sea level during the warm Pliocene $22 \mathrm{~m} \pm 10 \mathrm{~m}$ above present

- GIS = +7m (Dolan et al., 2011)
- WAIS $=+7 \mathrm{~m}$ (Pollard \& DeConto, 2009) BUT BASED IN RECORDS FROM ONE LOCATION!!!

The "missing" 8 meters of sea level have to come from East Antarctica, but from where?

We have learned that last time Earth had similar CO_{2} concentrations to today ($\mathrm{CO}_{2}>400 \mathrm{ppm}$):

- The West Antarctic Ice Sheet was highly dynamic and at times collapsed but need to calibrate models with data from other sites.
- Records from the Wilkes Land margin also show the ice sheet to be dynamic.
- Sea surface temperatures from few localities around Antarctica indicate higher T than today $\left(5-2.5^{\circ} \mathrm{C}\right)$
- Under these higher CO_{2} and temperature scenarios mean global sea levels were around 20 m above present sea level.

More records are needed from around Antarctica to provide additional boundary conditions to models that can inform about what can be expected in the future

WHAT ARE THE FORCING MECHANISMS FOR CHANGE?

Orbital Forcing

Oceanic Forcing

CO_{2} Forcing

ADDITIONAL BOUNDARY CONDITIONS FROM SEDIMENT RECORDS ARE NEEDED TO CALIBARTE MODELS AND BETTER CONSTRAINTHE FORCINGS

SUMMARY

- PAST ENVIRONMENTAL CONDITIONS CAN BE INTERPRETED FROM SEDIMENT RECORDS
- SEDIMENT RECORDS CAN ALSO PROVIDE INFORMATION ABOUT FORCING MECHANISMS FOR CHANGING CONDITIONS
- EXISTING DATA IS TO SPARSE TO PROVIDE FOR NEEDED BOUNDARY CONDITIONS TO THE MODELS

Sediment records
modeling

Climate modelling

Sediment records

Why do we need paleoclimate records from Antarctica?

Long-term paleoclimate records - Technical Challenges: The need for collaborative international efforts - The role of SCAR

How past Antarctic environmental conditions can inform future changes

The road ahead: SCAR-Past Antarctic Ice Sheet Dynamics (PAIS)

FOUR DECADES OF ANTARCTIC DRILLING

SCAR
Past Antarctic Ice Sheet Dynamics (PAIS)
2013-2020

PAIS marine-continental transects \& links to Ice cores
Velocity magnitude [m/yr]

0
\square

1000 km
30
Sutulstraumen

Modified from Rignot et al., 2011 NASA

Subglacial Lake drilling
ANDRILL CH program
Previous drill sites

PAIS selected continent-to-abyss transects along single ice drainage systems (2012-2020)

Final Summary

- IPCC 2013 projections have not been experienced on our Planet for more than 3 million years. Then, the Earth only sustained ice sheets in Antarctica. Long-term geological records of Antarctic paleoclimate \& ice sheet dynamics are therefore key to informing future trends of ice sheet behaviour \& sea level.
- We can reconstruct past environmental conditions and forcing mechanims, but existing records are at this time too few and dispersed to provide for solid reference scenarios for future climate and ice sheet modelling.
- The SCAR-PAIS Research Programme is undertaking a major effort to reconstruct past Antarctic ice sheet dynamics and its contribution to sea level change in response to past warm climates with elevated temperatures and CO_{2} that can be used as reference scenarios for future change.
- For this endevour, there are major thechnological and logistical challenges that will be overcomed trough national and international coordination and collaborations.

